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Abstract
In this paper, for generalized two-dimensional delay space-fractional Fisher equations with 
mixed boundary conditions, we present the stability and convergence computed by a novel 
numerical method. The unconditional stability of analytic solutions is first derived. Next, 
we have established the linear �-method with the Grünwald-Letnikov operator, which has 
the first-order accuracy in spatial dimensions. Moreover, approaches involved error esti-
mations and inequality reductions are utilized to prove the stability and convergence of 
numerical solutions under different values of � . Eventually, we implement a numerical 
experiment to validate theoretical conclusions, where the interaction impacts of fractional 
derivatives have been further analyzed by applying two different harmonic operators.

Keywords Space-fractional delay Fisher equation · Grünwald-Letnikov operator ·  
Linear �-method · Stability · Convergence

Mathematics Subject Classification 65M12 · 35R11 · 47A58

1 Introduction

In last few decades, fractional calculus growing considerable attention has been widely 
applied in numerous fields of sciences to precisely describe many natural phenomena and 
dynamic processes. The interested readers can read [2, 28, 30, 33] for more details.

The generalized integral order Fisher equations have cast researchers’ eyes due to their 
broader practicality in various fields, such as dynamics of propagation [34], population 
estimation [24], epidemic diseases and bacteria [9, 17, 19]. Nevertheless, there are fewer 
investigations on fractional counterparts. With the utilization of a nonlinear time-fractional 
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Fisher equation, for instance, Wang et al. [37] depicted chemical kinetics via a local mesh-
less method combined with an explicit difference scheme.

In general, the analytic solutions for numerous partial differential equations are dif-
ficult to obtain [23, 41]. Therefore, we should redirect that spotlight on qualitative proper-
ties of numerical solutions concerning such equations. Zhang and Li [42] proposed linear 
�-methods with two kinds of difference operators to study the unique solvability, asymp-
totic stability, and convergence of space-fractional delayed diffusion equations. Zaky et al. 
[40] employed a Legendre-based Galerkin spectral method and L1-type approximations to 
explore nonlinear time-space fractional diffusion-reaction equations on both uniform and 
graded meshes. Hendy et al. [15] constructed a novel numerical technique for solving a 
nonlinear multi-term time-space fractional delayed differential equation, where the forth-
order difference approximation was derived for spatial derivatives using the weighted 
average of the shifted Grünwald formulae. Due to some macroscopic behaviors of materi-
als, a new Caputo fractional derivative via fixed point theorem was applied to study the 
nonlinear Fisher’s reaction-diffusion equation in Abdon’s research [4]. Demir et al. in [11] 
presented a residual power series method to approximate a time-fractional Fisher equation 
with a tiny delay. Majeed et al. [25] further applied an efficient cubic B-spline collocation 
scheme and obtained the unconditional stability. More discrete methods can be found in 
[12, 31, 43].

Apart from above-mentioned interpretations in the one-dimensional space, the exten-
sion of theoretical investigations on multiple dimensions plays a significant role in real-
world applications. For a delay fractional partial hyperbolic differential system in two 
dimensions, Arfaoui and Makhlouf [3] established certain conditions of the stability and 
illustrated numerical simulations by applying the fix-point approach. Zhu et al. [45] stud-
ied the uniqueness of weak solutions, the stability and convergence in the L2-norm for 
Riesz space-fractional Fisher equations in two dimensions, where the model is fully dis-
cretized by the linearized Crank-Nicolson method. Based on two different time discretiza-
tion schemes, Oruç [27] presented a more accurate and reliable collocation method with 
Chebyshev wavelets to calculate two-space dimensional extended Fisher equations. For the 
dynamics of a cell sheet wound closure, Achouri et  al. [1] investigated some numerical 
properties of the two-dimensional Fisher equation with mixed boundary conditions using 
energy functionals in the Hilbert space together with the nonlinear Crank-Nicolson scheme. 
For more details on other numerical methods to solve such equations in two dimensions, 
the readers can refer to [10, 22, 39] and references therein.

To the authors’ best knowledge, when exploring many practical problems related to dif-
ferential equations, the delayed term is always introduced since we cannot avoid the sto-
chastic influence brought by past states. Even though there are already numerous researches 
to solve different classes of fractional differential equations with delay, there is less work 
on the numerical analysis of space-fractional Fisher equations along with a time delay and 
complex boundary conditions in two dimensions. So in this research, associating mixed 
boundary conditions with constraints, the generalized two-dimensional space-fractional 
Fisher equation with a delayed term is considered as follows:
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where t > 0, x ∈ Ix = (0, xR), y ∈ Iy = (0, yR) , 𝜅, 𝛾 > 0 represent the diffusion coefficients, 

and 𝜏 > 0 denotes the time-delay. Particularly, ��
x
u(x, y, t) and ��

y
u(x, y, t) are the Riesz 

space-fractional derivatives with respect to x and y, respectively, where �, � ∈ (1, 2] . Sup-
posing u(x, y,  t) is compactly supported on the open interval Ix × Iy , then the definitions 
regarding Riesz fractional derivatives are enumerated as follows:

where 0D�

x
, xD

�

xR
 represent two-sides Riemann-Liouville fractional derivative operators in 

[44], respectively. Their integrated patterns are specifically defined by

where Γ(⋅) = ∫ ∞

0
t(⋅−1)e−tdt (x, y > 0) denote the Gamma functions referred in [32], and 

0D
�

y
, yD

�

yR
 are analogously defined as well.

For convenience, we define a nonlinear-reaction term as follows:

and several assumptions should be guaranteed throughout the full paper,

(A1) the analytic and numerical solutions of (1) are sufficiently smooth;
(A2) the continuous function f (x, y, t, u(x, y, t − �)) satisfies the Lipschitz condition 

where (x, y, t) ∈ Ix × Iy × (0,T) and L denotes the Lipschitz constant.
On the selection of the numerical method for Problem (1), the linear �-method is applied 

to discrete the temporal derivative. The spatial approximation of Riesz fractional deriva-
tives is based on Grünwald-Letnikov operators with the first-order accuracy [26]. Together 
with our contributions and extensions in this research, numerical investigations with more 
complicated boundary conditions have been analyzed. Most importantly, it is a remarkable 
fact that we mentioned the interaction impacts of fractional derivatives computed by two 
kinds of approximation difference operators when verifying the theoretical effectiveness.

(1)

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝜕tu(x, y, t) = 𝜅𝜕
𝛼

x
u(x, y, t) + 𝛾𝜕

𝛽

y
u(x, y, t) +𝜛u(x, y, t − 𝜏)(1 − u(x, y, t − 𝜏))

+ f (x, y, t), 𝜛 ∈ ℝ∗, (x, y, t) ∈ (0, xR) × (0, yR) × (0, T],

u(0, y, t) = 0,
𝜕

𝜕x
u(xR, y, t) = 0, y ∈ [0, yR], t > 0,

u(x, 0, t) = 0,
𝜕

𝜕y
u(x, yR, t) = 0, x ∈ [0, xR], t > 0,

u(x, y, t) = 𝜑0(x, y, t),−𝜏 ⩽ t ⩽ 0, (x, y) ∈ Īx × Īy,

⎧⎪⎨⎪⎩

�
�

x
u(x, y, t) = −

1

2 cos(�π∕2)

�
0D

�

x
u(x, y, t) + xD

�

xR
u(x, y, t)

�
,

�
�

y
u(x, y, t) = −

1

2 cos(�π∕2)

�
0D

�

y
u(x, y, t) + yD

�

yR
u(x, y, t)

�
,

⎧⎪⎨⎪⎩

0D
�

x
u(x, y, t) =

1

Γ(2 − �)

�
2

�x2 ∫
x

0

u(�, y, t)(x − �)1−�d�,

xD
�

xR
u(x, y, t) =

1

Γ(2 − �)

�
2

�x2 ∫
xR

x

u(�, y, t)(� − x)1−�d�,

(2)f (x, y, t, u(x, y, t − �)) ≜ �u(x, y, t − �)(1 − u(x, y, t − �)) + f (x, y, t),

(3)|f (x, y, t, u(x, y, t − 𝜏)) − f (x, y, t, ū(x, y, t − 𝜏))| ⩽ L|u − ū|,
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The organization of this paper is as follows. In Sect. 2, the unconditional stability con-
cerning analytic solutions of Problem (1) is studied. We propose the linear �-method with 
Grünwald-Letnikov operators to discrete the original equation in Sect. 3. Further analysis 
involved the stability, local truncation error, and convergence of the numerical scheme are 
also investigated. In Sect. 4, we present several numerical evidences to confirm our theo-
retical results. Eventually, some concluding remarks are briefly provided in Sect. 5.

2  Stability of Analytic Solutions

In this section, a stability condition for analytic solutions of Problem (1) is essentially 
investigated by considering a homogeneous case.

Theorem 1 The analytic solutions of Problem (1) are unconditionally stable for any posi-
tive constants �, �.

Proof In order to obtain the stability of analytic solutions, the characteristic function plays 
a significant role. The following two cases are specifically considered.

Case 1 � = � = 2 . We define a characteristic equation for the homogeneous problem 
�tu(x, y, t) = ��

�

x
u(x, y, t) + ��

�

y
u(x, y, t) as follows:

where D = {u∶ u ∈ C2(Ix × IR) ∩ C(Īx × Īy)} and the set of continuous functions D satisfies 

u(x, 0) = �xu(xR, y) = 0, u(0, y) = �yu(x, yR) = 0.
According to [29], the method of separation of variables is commonly applied. It is 

worth noting that the eigenvalue problem in two dimensions

have eigenvalues 
{(

mπ

2xR

)2

,

(
nπ

2yR

)2}∞

m,n=1

 with eigenfunctions

where �,� denote the non-zero constants.
Substituting

into (4), we have the following characteristic equation:

(4)�z(x, y) − �
�
2z(x, y)

�x2
− �

�
2z(x, y)

�y2
= 0, z ∈ D ⧵ {(0, 0)},

(5)

{
�
��(x)+��(x) = 0,�(0) = �

�
(
xR
)
= 0, x ∈

(
0, xR

)
,

�
��(y)+��(y) = ��(y),�(0) = �

�
(
yR
)
= 0, y ∈

(
0, yR

)

�m(x) = cos

(
mπx

2xR

)
,�n(y) = cos

(
nπy

2yR

)
,

z(xm, yn) =

∞∑
n=1

∞∑
m=1

zmn cos

(
mπx

2xR

)
cos

(
nπy

2yR

)

(6)f (�mn) ≜ �mn + �

(
mπ

2xR

)2

+ �

(
nπ

2yR

)2

, m, n = 1, 2,⋯ .
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Admittedly, the analytic solutions are stable if all zeros of f (�nm) have negative real parts, 
while it is unstable if at least one zero has a positive real part.

Denote �mn = amn + bmni , where amn, bmn ∈ ℝ . Then the separations of its real and 
imaginary parts give

which implies that the analytic solutions of Problem (1) are unconditionally stable.
Case 2 �, � ∈ (1, 2) . Associated with some properties of differential operators from [36, 

42], the homogeneous case can be redefined by the Fourier transform

where F
(
−𝜕𝛼

x
u(x, y, t)

)
= |m|𝛼e�̃�mnt and F

(
−𝜕𝛽

y
u(x, y, t)

)
= |n|𝛽e�̃�mnt.

Similar to (6)–(7), it is apparent to find that all zeros of the characteristic equa-
tion f̃ (�̃�mn) ≜ �̃�mn + 𝜅m𝛼 + 𝛾n𝛽 permanently have negative real parts by separating 

�̃�mn = ãmn + b̃mni , which shows the analytic solutions of Problem (1) are unconditionally stable. 
This completes the proof.

3  Numerical Scheme and Corresponding Analysis

In this section, utilizing the harmonic Grünwald-Letnikov operator for the Riesz space-
fractional derivative, we will set up a numerical method with the first-order accuracy in 
space. Then the stability and convergence of numerical solutions will be discussed.

3.1  Theoretical Derivation of the First‑Order Numerical Difference Scheme

At the very start, it is essential to introduce the following Grünwald-Letnikov operators and 
relevant approximations:

with

Let C1+�(ℝ) be the space of Hölder continuous functions with exponent � , whose counter-
parts have continuities with the first-order derivative in x-direction. C1+�(ℝ) can be analo-
gously defined in y-direction.

(7)amn = −𝜅

(
m2π2

4x2
R

)
− 𝛾

(
n2π2

4y2
R

)
< 0, bmn = 0,

(8)ut(x, y, t) + F
(
−��

x
u(x, y, t)

)
+ F

(
−��

y
u(x, y, t)

)
= 0,

(9)

⎧⎪⎪⎨⎪⎪⎩

Δ̃𝛼

hx
u(x, y, t) =

i+1�
l=0

g̃
(𝛼)

l
u
�
xi−l+1, yj, tk

�
+

Mx−i+1�
l=0

g̃
(𝛼)

l
u
�
xi+l−1, yj, tk

�
,

Δ̃
𝛽

hy
u(x, y, t) =

j+1�
l=0

g̃
(𝛽)

l
u
�
xi, yj−l+1, tk

�
+

My−j+1�
l=0

g̃
(𝛽)

l
u
�
xi, yj+l−1, tk

�

(10)g̃
(𝛼)

l
= (−1)l

Γ(𝛼 + 1)

Γ(𝛼 − l + 1)Γ(l + 1)
, g̃

(𝛽)

l
= (−1)l

Γ(𝛽 + 1)

Γ(𝛽 − l + 1)Γ(l + 1)
.
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Lemma 1 ([26]) Let u(x, ⋅, ⋅) ∈ C1+�(ℝ) and u(⋅, y, ⋅) ∈ C1+�(ℝ) . Then for fixed spacial 
step-sizes hx, hy

where c
�
= (2 cos(�π∕2))−1 and c

�
= (2 cos(�π∕2))−1.

For the temporal segmentation, we represent �Δt = {tk| − m ⩽ k ⩽ N} as a consolidated 
partition on the interval [ −�, T  ], where tk = kΔt (k = −m,−m + 1,⋯ , 0,⋯ ,N) with the 
time step-size Δt = �

m
 . Denote �h = {(xi, yj)|0 ⩽ i ⩽ Mx, 0 ⩽ j ⩽ My} as a uniform mesh 

on the spatial interval Ix × Iy , where xi = ihx for i = 0, 1,⋯ ,Mx , yj = jhy for j = 0, 1,⋯ ,My 

with the space step-sizes hx =
(

xR−0

Mx

)
 in x-direction and hy =

(
yR−0

My

)
 in y-direction, 

respectively.
By Lemma 1, we apply the first-order forward differential formula to discrete the left 

side of Problem (1)

and by utilizing the linear �-method, we can get the following finite difference scheme: 

and uk
i,j

 denotes the numerical solution of Problem (1) at point (xi, yj, tk) , where 
1 ⩽ i ⩽ Mx − 1, 1 ⩽ j ⩽ My − 1, 1 ⩽ k ⩽ N − 1.

Besides, for the defined nonlinear-reaction term (2), we have

When discretizing initial and mixed boundary conditions, the limit definitions of 
�xu(xR, y, t) = �yu(x, yR, t) = 0 are indispensable elements, which satisfy

−
c
𝛼

h𝛼
x

Δ̃𝛼

hx
u(x, y, t) = 𝜕

𝛼

x
u(x, y, t) + O(hx),−

c
𝛽

h
𝛽

y

Δ̃
𝛽

hy
u(x, y, t) = 𝜕

𝛽

y
u(x, y, t) + O(hy),

(11)�tu(x, y, t)|(xi,yj ,tk) =
uk+1
i,j

− uk
i,j

Δt
,

(12a)

𝜅𝜕
𝛼

x
u|(xi ,yj,tk) = −

𝜅c
𝛼

h𝛼
x

𝜃

(
i+1∑
l=0

g̃
(𝛼)

l
uk+1
i−l+1,j

+

Mx−i+1∑
l=0

g̃
(𝛼)

l
uk+1
i+l−1,j

)

−
𝜅c

𝛼

h𝛼
x

(1 − 𝜃)

(
i+1∑
l=0

g̃
(𝛼)

l
uk
i−l+1,j

+

Mx−i+1∑
l=0

g̃
(𝛼)

l
uk
i+l−1,j

)
,

(12b)

𝛾𝜕
𝛽

y
u�(xi,yj ,tk) = −

𝛾c
𝛽

h
𝛽

y

𝜃

⎛
⎜⎜⎝

j+1�
l=0

g̃
(𝛽)

l
uk+1
i,j−l+1

+

My−j+1�
l=0

g̃
(𝛽)

l
uk+1
i,j+l−1

⎞
⎟⎟⎠

−
𝛾c

𝛽

h
𝛽

y

(1 − 𝜃)

⎛⎜⎜⎝

j+1�
l=0

g̃
(𝛽)

l
uk
i,j−l+1

+

My−j+1�
l=0

g̃
(𝛽)

l
uk
i,j+l−1

⎞⎟⎟⎠
,

(13)
f (x, y, t, u(x, y, t − �))|(xi,yj ,tk) = �f

(
xi, yj, tk+1, u

(
xi, yj, tk+1−m

))

+ (1 − �)f
(
xi, yj, tk, u

(
xi, yj, tk−m

))
.
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then we can obtain

For further analysis, define some space-fractional partial difference operators

the finite difference scheme (11)–(13) can be subsequently rewritten as

Owing to the complexities of computations for high-dimensional problems, Alternating 
Direction Implicit Methods (ADIMs) have been efficiently applied. Then we will integrate 
the numerical scheme (15) into a novel operator form as follows:

where the extra perturbation error (Δt𝜃)2(𝛿𝛼
x
𝛿
𝛽

y
)uk+1

i,j
− (Δt(1 − 𝜃))2(𝛿𝛼

x
𝛿
𝛽

y
)uk

i,j
 can be negligi-

ble in comparison with the local truncation error Rk
i,j
(�).

Additionally, we introduce an intermediate variable u∗
i,j

 , the numerical scheme (16) will 
be decomposed into two independent equations, namely

where the relevant perturbation error concerning f is analogously ignored.
Denote ãx = c

𝛼
ax = 𝜅c

𝛼
Δt∕h𝛼

x
 and b̃y = c

𝛽
by = 𝛾c

𝛽
Δt∕h𝛽

y
 , then we rewrite the linear  

�-method with Grünwald-Letnikov operators (14) and (17) into the following matrix form:

lim
hx→0

u(xR, y, t) − u(xR − 2hx, y, t)

2hx
= 0, lim

hy→0

u(x, yR, t) − u(x, yR − 2hy, t)

2hy
= 0,

(14)

⎧
⎪⎨⎪⎩

uk
0,j

=
uk
Mx ,j

− uk
Mx−2,j

2hx
= 0, uk

i,0
=

uk
i,My

− uk
i,My−2

2hy
= 0,

uk
i,j
= �0

�
xi, yj, tk

�
, k = −m,−m + 1,⋯ , 0.

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝛿
𝛼

x
uk
i,j
= −

𝜅c
𝛼

h𝛼
x

�
i+1�
l=0

g̃
(𝛼)

l
uk
i−l+1,j

+

Mx−i+1�
l=0

g̃
(𝛼)

l
uk
i+l−1,j

�
,

𝛿
𝛽

y
uk
i,j
= −

𝛾c
𝛽

h
𝛽

y

⎛
⎜⎜⎝

j+1�
l=0

g̃
(𝛽)

l
uk
i,j−l+1

+

My−j+1�
l=0

g̃
(𝛽)

l
uk
i,j+l−1

⎞
⎟⎟⎠
,

(15)

(
1 − Δt𝜃𝛿𝛼

x
− Δt𝜃𝛿𝛽

y

)
uk+1
i,j

=
(
1 + Δt(1 − 𝜃)𝛿𝛼

x
+ Δt(1 − 𝜃)𝛿𝛽

y

)
uk
i,j

+ Δt
(
𝜃f
(
xi, yj, tk+1, u

k+1−m
i,j

)
+ (1 − 𝜃)f

(
xi, yj, tk, u

k−m
i,j

))
.

(16)

(
1 − Δt𝜃𝛿𝛼

x

)(
1 − Δt𝜃𝛿𝛽

y

)
uk+1
i,j

=
(
1 + Δt(1 − 𝜃)𝛿𝛼

x

)(
1 + Δt(1 − 𝜃)𝛿𝛽

y

)
uk
i,j

+ Δt
(
𝜃f
(
xi, yj, tk+1, u

k+1−m
i,j

)
+ (1 − 𝜃)f

(
xi, yj, tk, u

k−m
i,j

))
,

(17)

⎧⎪⎪⎨⎪⎪⎩

�
1 − Δt𝜃𝛿𝛼

x

�
u∗
i,j

=
�
1 + Δt(1 − 𝜃)𝛿𝛼

x

�
uk
i,j
+ Δt𝜃f

�
xi, yj.tk, u

k+1−m
i,j

�

+ Δt(1 − 𝜃)f
�
xi, yj.tk, u

k−m
i,j

�
,

�
1 − Δt𝜃𝛿𝛽

y

�
uk+1
i,j

=
�
1 + Δt(1 − 𝜃)𝛿𝛽

y

�
u∗
i,j
,
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where the corresponding coefficient matrices are defined by 

 and

Therefore, we obtain the entire matrix form of (18) as follows:

where

Moreover, it is of necessity to introduce the formations of S̃ and T̃  , whose elements are 
determined by (19a) and (19b). S̃ is a block diagonal matrix with (My − 1) orders, whose 
blocks are (Mx − 1) × (Mx − 1) square matrices concerning Ã in the numerical method, 
namely, S̃ = diag

(
Ã, Ã,⋯ , Ã

)
 . T̃  is an (My − 1) × (My − 1) block matrix whose non-zero 

blocks are diagonal matrices with (Mx − 1) orders. To put it differently, T̃i,j is a diagonal 

matrix resulting from B̃ , where T̃i,j = diag
(
b̃i,j, b̃i,j,⋯ , b̃i,j

)
, b̃i,j ∈ B̃.

(18)

{ (
I + ãx𝜃Ã

)
U∗

j
=
(
I − ãx(1 − 𝜃)Ã

)
Uk

j
+ Δt𝜃Fk+1

j
+ Δt(1 − 𝜃)Fk

j
,

(
I + b̃y𝜃B̃

)
Uk+1

i
=
(
I − b̃y(1 − 𝜃)B̃

)
U∗

i
,

(19a)Ã =

⎛
⎜⎜⎜⎜⎜⎜⎝

2g̃
(𝛼)

1
g̃
(𝛼)

0
+ g̃

(𝛼)

2
⋯ g̃

(𝛼)

Mx−2
+ g̃

(𝛼)

Mx
g̃
(𝛼)

Mx−1

g̃
(𝛼)

0
+ g̃

(𝛼)

2
2g̃

(𝛼)

1
⋯ g̃

(𝛼)

Mx−3
+ g̃

(𝛼)

Mx−1
g̃
(𝛼)

Mx−2

⋮ ⋮ ⋮ ⋮

g̃
(𝛼)

Mx−2
g̃
(𝛼)

Mx−3
⋯ 2g̃

(𝛼)

1
+ g̃

(𝛼)

3
g̃
(𝛼)

0
+ g̃

(𝛼)

2

g̃
(𝛼)

Mx−1
g̃
(𝛼)

Mx−2
⋯ 2

�
g̃
(𝛼)

0
+ g̃

(𝛼)

2

�
2g̃

(𝛼)

1

⎞
⎟⎟⎟⎟⎟⎟⎠

,

(19b)B̃ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

2g̃
(𝛽)

1
g̃
(𝛽)

0
+ g̃

(𝛽)

2
⋯ g̃

(𝛽)

My−2
+ g̃

(𝛽)

My
g̃
(𝛽)

My−1

g̃
(𝛼)

0
+ g̃

(𝛼)

2
2g̃

(𝛽)

1
⋯ g̃

(𝛽)

My−3
+ g̃

(𝛽)

My−1
g̃
(𝛽)

My−2

⋮ ⋮ ⋮ ⋮

g̃
(𝛽)

My−2
g̃
(𝛽)

My−3
⋯ 2g̃

(𝛽)

1
+ g̃

(𝛽)

3
g̃
(𝛽)

0
+ g̃

(𝛽)

2

g̃
(𝛽)

My−1
g̃
(𝛽)

My−2
⋯ 2

�
g̃
(𝛽)

0
+ g̃

(𝛽)

2

�
2g̃

(𝛽)

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

U∗
j
=
(
u∗
1,j
, u∗

2,j
,⋯ , u∗

Mx−1,j

)T

,Uk
j
=
(
uk
1,j
, uk

2,j
,⋯ , uk

Mx−1,j

)T

,

Fk
j
=
(
f (x1, yj, tk, u

k−m
1,j

),⋯ , f (xMx−1
, yj, tk, u

k−m
Mx−1,j

)
)T

,

U∗
i
=
(
u∗
i,1
, u∗

i,2
,⋯ , u∗

i,My−1

)T

,Uk+1
i

=
(
uk+1
i,1

, uk+1
i,2

,⋯ , uk+1
i,My−1

)T

.

(20)

(
I + ãx𝜃S̃ + b̃y𝜃T̃

)
Uk+1 =

(
I − ãx(1 − 𝜃)S̃ − b̃y(1 − 𝜃)T̃

)
Uk + Δt𝜃Fk+1

+ Δt(1 − 𝜃)Fk,

Uk =
(
uk
1,1
,⋯ , uk

Mx−1,1
,⋯ , uk

1,My−1
,⋯ , uk

Mx−1,My−1

)T

,

Fk = (f (x1, y1, tk, u
k−m
1,1

),⋯ , f (xMx−1
, y1, tk, u

k−m
Mx−1,1

),⋯ ,

f (x1, yMy−1
, tk, u

k−m
1,My−1

),⋯ , f (xMx−1
, yMy−1

, tk, u
k−m
Mx−1,My−1

))T.
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3.2  Some Relevant Properties of Coefficient Matrices

Lemma 2 ([39]) Let g̃(𝛼)
l

 be coefficients of the Grünwald-Letnikov difference approximation 
(9)–(10). Then 

(a) g̃
(𝛼)

0
= 1, g̃

(𝛼)

1
= −𝛼 < 0;

(b) g̃
(𝛼)

l
> 0 , for all l = 0, 2, 3,⋯;

(c) 
∞∑
l=0

g̃
(𝛼)

l
= 0.

Lemma 3 ([8]) If the matrix D = (dil)m×m satisfies the follwing conditions:

then the norm inequality regarding X ∈ ℝm holds

where its maximum norm is defined by ‖X‖∞ = max
1⩽i⩽m

��xi��.

Before the explorations of coefficient matrices c
𝛼
S̃, c

𝛽
T̃  , it is essential to principally investi-

gate the positive properties of c
𝛼
Ã, c

𝛽
B̃.

First and foremost, associating Lemma 2 with the Gershgorin’s Disk Theorem [16], we 
can obtain the upper and lower bounds of 𝜆c

𝛼
Ã as follows:

Consequently, we have

which indicates c
𝛼
Ã is positive definite since the negative properties of c

�
 and g̃(𝛼)

1
 . Simi-

larly, we can prove that c
𝛽
B̃ is positive definite because of 0 < 𝜆c

𝛽
B̃ < 4c

𝛽
g̃
(𝛽)

1
 as well. Fur-

thermore, we apply Matlab built-in command eig to numerically calculate the ranges of 
eigenvalues 𝜆c

𝛼
Ã and 𝜆c

𝛽
B̃ , listed in Table 1 by different orders �, �.

Based on these discussions mentioned above, we could derive the following theorem 
concering c

𝛼
S̃, c

𝛽
T̃ .

Theorem 2 Suppose that 1 < 𝛼, 𝛽 ⩽ 2 , then the matrices c
𝛼
S̃, c

𝛽
T̃  defined by (20) are posi-

tive definite. Additionally, the coefficient matrix satisfies

(21)
m∑

l=1,l≠i
||dil|| ⩽ ||dii|| − 1, i = 1, 2,⋯ ,m,

(22)‖X‖∞ ⩽ ‖DX‖∞,

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

���𝜆c𝛼 Ã − 2c
𝛼
g̃
(𝛼)

1

��� ⩽ −c
𝛼

�
i�

l=0,l≠1
g̃
(𝛼)

l
+

Mx−i+1�
l=0,l≠1

g̃
(𝛼)

l

�
< −c

𝛼

�
−g̃

(𝛼)

1
− g̃

(𝛼)

1

�

= 2c
𝛼
g̃
(𝛼)

1
, when i ≠ Mx − 2,

���𝜆c𝛼 Ã − 2c
𝛼
g̃
(𝛼)

1

��� ⩽
����𝜆c𝛼 Ã − c

𝛼

�
2g̃

(𝛼)

1
+ g̃

(𝛼)

3

����� ⩽ −c
𝛼

�
Mx−2�
l=0,l≠1

g̃
(𝛼)

l
+

3�
l=0,l≠1

g̃
(𝛼)

l

�

< −c
𝛼

�
−g̃

(𝛼)

1
− g̃

(𝛼)

1

�
= 2c

𝛼
g̃
(𝛼)

1
.

(23)0 < 𝜆c
𝛼
Ã < 4c

𝛼
g̃
(𝛼)

1
,
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Proof First of all, it is apparent to know that c
𝛼
S̃, c

𝛽
T̃  are positive definite due to the rela-

tionships between c
𝛼
Ã and c

𝛼
S̃ as well as c

𝛽
B̃ and c

𝛽
T̃ .

Moreover, we clearly observe that elements of c
𝛼
Ã and c

𝛽
B̃ satisfy the following condi-

tions enlightened by Lemma 3:

which will further illustrate

Therefore, the linear combination of norm relations is obviously acquired

which directly completes the proof because of their similarities between matrices Ã, B̃ and 
S̃, T̃ .

(24)‖X‖∞ ⩽
���
�
I + ãx𝜃S̃ + b̃y𝜃T̃

�
X
���∞.

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Mx−1�
l=1,l≠i

��ãx𝜃ãil�� = ��ãx��𝜃
�

i�
l=0,l≠1

���g̃
(𝛼)

l

��� +
Mx−i+1�
l=0,l≠1

���g̃
(𝛼)

l

���
�
,

My−1�
l=1,l≠j

���b̃y𝜃b̃jl
��� =

���b̃y
���𝜃
⎛⎜⎜⎝

j�
l=0,l≠1

���g̃
(𝛽)

l

��� +
My−j+1�
l=0,l≠1

���g̃
(𝛽)

l

���
⎞
⎟⎟⎠
,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Mx−1�
l=1,l≠i

��ãx𝜃ãil�� ⩽
⎧⎪⎨⎪⎩

ax𝜃 ⋅ 2c𝛼 g̃
(𝛼)

1
, i ≠ Mx − 2,����ãx𝜃

�
2g̃

(𝛼)

1
+ g̃

(𝛼)

3

����� < ax𝜃 ⋅ 2c𝛼 g̃
(𝛼)

1
, i = Mx − 2,

My−1�
l=1,l≠j

���b̃y𝜃b̃jl
��� ⩽

⎧
⎪⎨⎪⎩

by𝜃 ⋅ 2c𝛽 g̃
(𝛽)

1
, j ≠ My − 2,����b̃y𝜃

�
2g̃

(𝛽)

1
+ g̃

(𝛽)

3

����� < by𝜃 ⋅ 2c𝛽 g̃
(𝛽)

1
, j = My − 2.

(25)‖X‖∞ ⩽
���
�
I + ax𝜃c𝛼Ã + by𝜃c𝛽 B̃

�
X
���∞,

Table 1  The minimum and maximum eigenvalues of the positive coefficient matrices c
𝛼
Ã, c

𝛽
B̃

Mx � = 1.5 � = 1.7 � = 1.9

min 𝜆c
𝛼
Ã max 𝜆c

𝛼
Ã min 𝜆c

𝛼
Ã max 𝜆c

𝛼
Ã min 𝜆c

𝛼
Ã max 𝜆c

𝛼
Ã

10 0.191 248 48 3.876 210 43 0.146 710 56 3.538 612 00 0.121 331 75 3.670 407 90
100 0.004 666 24 3.999 105 07 0.002 480 91 3.645 617 95 0.001 352 10 3.777 741 08
1 000 0.000 253 69 3.999 992 03 0.000 075 77 3.646 440 81 0.000 020 42 3.778 644 56

My � = 1.2 � = 1.6 � = 1.8

min 𝜆c
𝛽
B̃ max 𝜆c

𝛽
B̃ min 𝜆c

𝛽
B̃ max �B min 𝜆c

𝛽
B̃ max 𝜆c

𝛽
B̃

50 0.032 038 28 7.427 225 77 0.010 536 74 3.743 575 11 0.006 480 57 3.657 886 96
500 0.002 046 02 7.434 466 36 0.000 279 07 3.747 024 91 0.000 104 61 3.661 370 75
5 000 0.001 181 65 7.434 535 36 0.000 092 56 3.747 057 52 0.000 018 69 3.661 403 89
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3.3  Stability Analysis

To demonstrate the numerical stability, we divide Problem (20) with different values of � 
into two circumstances for analysis. Meanwhile, the relevant definition will be first pro-
posed which is fundamental for the following research.

Definition 1 (See, e.g., [16]) Let A ∈ ℝn×n , and the induced ∞-norm be defined by

where aij denotes the matrix element of A.

Then define the complex variable polynomial ( z ∈ ℂ),

where q̃ij(z) is a zero-polynomial, and

Then supported by the certain Lemma which is common knowledge from [22], for any 
m ⩾ 1 , a useful lemma is deduced as follows.

Lemma 4 P̃𝜃

ij
(z) is a Schur polynomial if and only if the following condition holds when 

� ∈ [0, 1∕2):

where 𝜆c𝛼 S̃
i

, 𝜆
c
𝛽
T̃

j
 are closely related to fractional derivatives �, � , respectively.

Proof To begin with, we need denote the maximum of 𝜆c𝛼 S̃
i

 and 𝜆c𝛽 T̃
j

 as �.

Firstly, we consider the sufficiency. According to p̃ij(z) = 0 , we obtain

Combining Condition (28) with positive properties of ax and by , we can easily know that 

0 < ax𝜆
c
𝛼
S̃

i
+ by𝜆

c
𝛽
T̃

j
< (ax + by)𝜆 < 2∕(1 − 2𝜃) , hence the corresponding inequalities are 

satisfied as follows:

(26)‖A‖∞ = max
1⩽i⩽n

n�
j=1

���aij
���,

(27)P̃𝜃

ij
(z) = p̃ij(z)z

m − q̃ij(z),

p̃ij(z) =
(
1 + 𝜃

(
ax𝜆

c
𝛼
S̃

i
+ by𝜆

c
𝛽
T̃

j

))
z −

(
1 − (1 − 𝜃)

(
ax𝜆

c
𝛼
S̃

i
+ by𝜆

c
𝛽
T̃

j

))
.

(28)

ax + by <
2

⎛
⎜⎜⎜⎝

max
1⩽i⩽Mx−1,

1⩽j⩽My−1

�
𝜆
c
𝛼
S̃

i
, 𝜆

c
𝛽
T̃

j

�⎞⎟⎟⎟⎠
(1 − 2𝜃)

,

(29)|z| =
|||||||
1 −

ax𝜆
c
𝛼
S̃

i
+ by𝜆

c
𝛽
T̃

j

1 + 𝜃

(
ax𝜆

c
𝛼
S̃

i
+ by𝜆

c
𝛽
T̃

j

)
|||||||
.



 Communications on Applied Mathematics and Computation

1 3

which implies that |z| < 1 holds deduced by p̃ij(z) = 0.
Let p̃ij(z) ≜ w̃ . Then we set up a complex variable function

where w̃ = x̃ + ỹi (x̃, ỹ ∈ ℝ) denotes an imaginary number.
Similar to the derivation processes in [38], the minimum of |w̃| can be simplified as 

follows:

Case 1 Suppose that min|z|=1,z∈ℂ
|||p̃ij(z)

||| = ax𝜆
c
𝛼
S̃

i
+ by𝜆

c
𝛽
T̃

j
.

With positive properties of eigenvalues computed by c
𝛼
S̃, c

𝛽
T̃  , and coefficients ax, by , 

we obviously discover that |||p̃ij(z)
||| ⩾ ax𝜆

c
𝛼
S̃

i
+ by𝜆

c
𝛽
T̃

j
> 0 holds.

Case 2 Suppose that min|z|=1,z∈ℂ
|||p̃ij(z)

||| =
||||−2 + (1 − 2𝜃)

(
ax𝜆

c
𝛼
S̃

i
+ by𝜆

c
𝛽
T̃

j

)||||.
By Condition (28), we have

which further implies that

So for any |z| = 1, z ∈ ℂ , the non-zero restrictions of p̃ij(z)zm − q̃ij(z) and |||p̃ij(z)
||| ⩾

|||q̃ij(z)
||| 

are simultaneously satisfied, which conclude that P̃𝜃

ij
(z) is a Schur polynomial.

In what follows, we proceed to prove the necessity by contradictions.
Case 1 Suppose that ax + by =

2

�(1−2�)
 . Substituting z = −1 and 𝜆c𝛼 S̃

i
= 𝜆

c
𝛽
T̃

j
= 𝜆 into (27) 

when m is even, then we have

which contradicts the non-zero constraints.
Case 2 Suppose that ax + by >

2

𝜆(1−2𝜃)
 . From (29) we have

0 <

ax𝜆
c
𝛼
S̃

i
+ by𝜆

c
𝛽
T̃

j

1 + 𝜃

(
ax𝜆

c
𝛼
S̃

i
+ by𝜆

c
𝛽
T̃

j

) =
1

𝜃 + 1∕
(
ax𝜆

c
𝛼
S̃

i
+ by𝜆

c
𝛽
T̃

j

) <
1

𝜃 + (1 − 2𝜃)∕2
= 2,

(30)z =
w̃ + 1 − (1 − 𝜃)

(
ax𝜆

c
𝛼
S̃

i
+ by𝜆

c
𝛽
T̃

j

)

1 + 𝜃

(
ax𝜆

c
𝛼
S̃

i
+ by𝜆

c
𝛽
T̃

j

) ,

min|z|=1,z∈ℂ |w| = min

{
ax𝜆

c
𝛼
S̃

i
+ by𝜆

c
𝛽
T̃

j
,
||||−2 + (1 − 2𝜃)

(
ax𝜆

c
𝛼
S̃

i
+ by𝜆

c
𝛽
T̃

j

)||||
}
.

0 <

(
ax𝜆

c
𝛼
S̃

i
+ by𝜆

c
𝛽
T̃

j

)
(1 − 2𝜃) <

(
ax + by

)
𝜆(1 − 2𝜃) < 2,

|||p̃ij(z)
||| ⩾

||||−2 + (1 − 2𝜃)
(
ax𝜆

c
𝛼
S̃

i
+ by𝜆

c
𝛽
T̃

j

)|||| > 0.

P̃𝜃

ij
(−1) = −2 +

(
ax + by

)
𝜆(1 − 2𝜃) = 0,
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then there exists a possibility of |z| > 1 since 1∕
(
� + 1∕�

(
ax + by

))
 is an infinity value 

greater than 2, which contradicts aforementioned discussions.
In general, the necessity and sufficiency are completely proved.

With Lemma 4, we can derive a theorem of stability when �, � ∈ (1, 2] and � ∈ [0, 1∕2).

Theorem  3 Accompanied with strictly positive properties of ax, by , the linear �-method 

with the Grünwald-Letnikov operator is stable when �, � ∈ (1, 2] and � ∈ [0, 1∕2) if and 
only if Condition (28) holds.

Proof At the very beginning, we need to introduce the numerical solution ūk
i,j

 with a tiny 
perturbation calculated by the proposed finite difference scheme

where �k
i,j

 is influenced by the initial condition. Denote

where 𝜀k
i,j
= ūk

i,j
− uk

i,j
.

Moreover, it is essential to define an error regarding the nonlinear-reaction term

where 𝛽k
i,j
= f

(
xi, yj, tk, ū

k−m
i,j

)
− f

(
xi, yj, tk, u

k−m
i,j

)
 , and we should assure the Lipschitz con-

dition is satisfied as follows:

With the hypothesis said before, we will take

into consideration, in other words, we concentrate on

for the error terms �k , it evidently follows from the Lipschitz condition (32) that

0 <

ax𝜆
c
𝛼
S̃

i
+ by𝜆

c
𝛽
T̃

j

1 + 𝜃

(
ax𝜆

c
𝛼
S̃

i
+ by𝜆

c
𝛽
T̃

j

) <
1

𝜃 + 1∕𝜆
(
ax + by

) >
1

𝜃 + (1 − 2𝜃)∕2
= 2,

(31)ūk
i,j
= 𝜑0(xi, yj, tk) + 𝜓

k
i,j
,−m ⩽ k ⩽ 0,

�
k =

(
�
k
1,1
,⋯ , �k

Mx−1,1
, �k

1,2
,⋯ , �k

Mx−1,2
,⋯ , �k

1,My−1
,⋯ , �k

Mx−1,My−1

)T

,

�
k =

(
�
k
1,1
,⋯ , �k

Mx−1,1
, �k

1,2
,⋯ , �k

Mx−1,2
,⋯ , �k

1,My−1
,⋯ , �k

Mx−1,My−1

)T

,

(32)
|||𝛽

k
i,j

||| ⩽ L1
|||ū

k−m
i,j

− uk−m
i,j

|||, L1 ∈ ℝ∗.

(33)
𝜀
k+1 =

(
I + ãx𝜃S̃ + b̃y𝜃T̃

)−1(
I − ãx(1 − 𝜃)S̃ − b̃y(1 − 𝜃)T̃

)
𝜀
k

+
(
I + ãx𝜃S̃ + b̃y𝜃T̃

)−1(
Δt𝜃𝛽k+1 + Δt(1 − 𝜃)𝛽k

)

‖𝜀k+1‖∞ ⩽
���
�
I + ãx𝜃S̃ + b̃y𝜃T̃

�−1�
I − ãx(1 − 𝜃)S̃ − b̃y(1 − 𝜃)T̃

����∞‖𝜀
k‖∞

+
���
�
I + ãx𝜃S̃ + b̃y𝜃T̃

�−1���∞
�
Δt𝜃‖𝛽k+1‖∞ + Δt(1 − 𝜃)‖𝛽k‖∞

�
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Besides, it is necessary to approximate the maximum norm of coefficient matrices, where 
Lemma 4 plays an essential role for the following work.

Associating investigations of Theorem 2 with eigenvalues’ discussions in Sect. 3.2, we 
can convert this problem into analyzing the maximum of

which is equivalent to the norm accompanied with ‖�k‖∞.
By Lemma 4, we can easily derive

Otherwise, its norm is a boundless value if Condition (28) is not satisfied.
For further simplifications, suppose that

where m is a positive integer greater than 1, then we have

Therefore, the error ‖�k+1‖∞ can be improved as

Using multiple iteration processes, the conditional stability with (28) will be properly dem-
onstrated, and we can arrive at the following inequalities:

where C represents a positive constant which is dependent on Δt and hx, hy.

Under the situation � ∈ [1∕2, 1] , the unconditional stability will be given below.

Δt�‖�k+1‖∞ + Δt(1 − �)‖�k‖∞ ⩽ L1Δt
�
�‖�k+1−m‖∞ + (1 − �)‖�k−m‖∞

�
.

(34)max
1⩽i⩽Mx−1,

1⩽j⩽My−1

|||||||

1 − (1 − 𝜃)
(
ax𝜆

c
𝛼
S̃

i
+ by𝜆

c
𝛽
T̃

j

)

1 + 𝜃

(
ax𝜆

c
𝛼
S̃

i
+ by𝜆

c
𝛽
T̃

j

)
|||||||
,

(35)
‖‖‖
(
I + ãx𝜃S̃ + b̃y𝜃T̃

)−1(
I − ãx(1 − 𝜃)S̃ − b̃y(1 − 𝜃)T̃

)‖‖‖∞ < 1.

ek = max

⎧⎪⎨⎪⎩
max
0⩽i⩽k

�‖�k‖∞
�
, max
1⩽i⩽Mx−1,1⩽j⩽My−1,

−m⩽k⩽0

�����
k
i,j

���
�⎫⎪⎬⎪⎭

,

(36)e0 = max
1⩽i⩽Mx−1,1⩽j⩽My−1,

−m⩽k⩽0

{|||�
k
i,j

|||
}
, e0 ⩽ e1 ⩽ ⋯ ⩽ ek−1 ⩽ ek.

(37)

ek+1 ⩽
‖‖‖
(
I + ãx𝜃S̃ + b̃y𝜃T̃

)−1(
I − ãx(1 − 𝜃)S̃ − b̃y(1 − 𝜃)T̃

)‖‖‖∞e
k

+
‖‖‖
(
I + ãx𝜃S̃ + b̃y𝜃T̃

)−1‖‖‖∞L1Δt
(
𝜃ek+1−m + (1 − 𝜃)ek−m

)

⩽ ek + L1Δt(𝜃e
k + (1 − 𝜃)ek) = (1 + L1Δt)e

k.

(38)ek+1 ⩽ (1 + L1Δt)
k+1e0 ⩽ exp

(
(k + 1)Δt ⋅ L1

)
e0 ⩽ C exp(TL1)e

0,
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Theorem 4 The linear �-method with the Grünwald-Letnikov operator is unconditionally 
stable for �, � ∈ (1, 2], � ∈ [1∕2, 1].

Proof At the beginning, we define a continuous function with respect to �,

then we observe that f̃ (𝜃) is a strictly monotonically increasing function since

Hence, applying the Intermediate Value Theorem, the values of f̃  at its endpoints are sim-
plified as

which further implies the maximum of (34) is analogously less than 1 due to

Similar to the investigations given by Theorem  3, the inequality (35) is unconditionally 
satisfied, and we can easily know the error reductions under the situation � ∈ [1∕2, 1] are 
identical with (37)–(38).

In conclusion, the unconditional stability when � ∈ [1∕2, 1] is completely proved.

3.4  Convergence Analysis

To obtain convergent results of the linear �-method with the Grünwald-Letnikov operator, 
it is essential to introduce the following lemma.

Lemma 5 ([6]) For the generalized initial-boundary value problem of partial differential 
equations, the proposed numerical method is convergent if it is stable and consistent (see, 
e.g., [35]), which is commonly known as Lax equivalence Theorem.

Applying Lemma 1 to the numerical discretizations (11), we have

where ut(xi, yj, tk+1) and U(xi, yj, tk+1) are specifically extended to three orders by utilizing 

Taylor series expansion, then R̃k
i,j
(𝜃) can be consequently simplified as follows:

(39)f̃ (𝜃) = −
ax𝜆

c
𝛼
S̃

i
+ by𝜆

c
𝛽
T̃

j

1 + 𝜃

(
ax𝜆

c
𝛼
S̃

i
+ by𝜆

c
𝛽
T̃

j

) ,

f̃ �(𝜃) =

⎛
⎜⎜⎜⎝

ax𝜆
c
𝛼
S̃

i
+ by𝜆

c
𝛽
T̃

j

1 + 𝜃

�
ax𝜆

c
𝛼
S̃

i
+ by𝜆

c
𝛽
T̃

j

�
⎞
⎟⎟⎟⎠

2

> 0.

f̃
(
1

2

)
=

−2
(
ax𝜆

c
𝛼
S̃

i
+ by𝜆

c
𝛽
T̃

j

)

2 +
(
ax𝜆

c
𝛼
S̃

i
+ by𝜆

c
𝛽
T̃

j

) , f̃ (1) =
−
(
ax𝜆

c
𝛼
S̃

i
+ by𝜆

c
𝛽
T̃

j

)

1 +
(
ax𝜆

c
𝛼
S̃

i
+ by𝜆

c
𝛽
T̃

j

) ,

−2 < f̃
(
1

2

)
⩽ f̃ (𝜃) ⩽ f̃ (1) < 0.

(40)uk+1
i,j

= uk
i,j
+ Δt�ut(xi, yj, tk+1) + Δt(1 − �)ut(xi, yj, tk) + ΔtO

(
hx + hy

)
,
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Basic calculations divide R̃k
i,j
(𝜃) into two cases with different values of � , which are sup-

ported to obtain the following result.

Theorem  5 Suppose that the assumptions in Theorem  3 and ( A1)–(A2 ) hold, the linear  
�-method with the Grünwald-Letnikov operator is convergent. Besides, there exists a posi-
tive constant �C > 0 independent on any step-sizes, such that

Proof Denote u(xi, yj, tk) as analytic solutions of Problem (1), then we define 

�
k
i,j
= u(xi, yj, tk) − uk

i,j
 , and

In the subsequent stage, the Lipschitz condition related to the nonlinear reaction term 
�
k
i,j
= f

(
xi, yj, tk, u(xi, yj, tk−m)

)
− f

(
xi, yj, tk, u

k−m
i,j

)
 should be guaranteed as

where the same condition applies to

Similar to (33), we will focus more on

where the following error term can be simplified:

and (35) is equally satisfied under various � with corresponding conditions.
Then we generate the convergence in two manners.
Case 1 When � = 1∕2 , the maximum norm of Rk satisfies

where Ĉ1 is a positive constant.
Suppose that êk = max

0⩽i⩽k

�‖𝜖i‖∞
�
 , we clearly notice that

R̃k
i,j
(𝜃) = U(xi, yj, tk+1) − uk+1

i,j

=
(
1

2
− 𝜃

)[
𝜕
2u

𝜕t2

]k
i,j

(Δt)2 +
(
1

6
−

𝜃

2

)[
𝜕
3u

𝜕t3

]k
i,j

(Δt)3

+ O
(
(Δt)4

)
+ ΔtO

(
hx + hy

)
.

(41)‖�k‖∞ ⩽

�
Ĉ
�
(Δt)2 + hx + hy

�
, � = 1∕2,

Ĉ(Δt + hx + hy), � ∈ [0, 1∕2) ∪ (1∕2, 1].

�
k =

(
�
k
1,1
,⋯ , �k

Mx−1,1
, �k

1,2
,⋯ , �k

Mx−1,2
,⋯ , �k

1,My−1
,⋯ , �k

Mx−1,My−1

)T

.

(42)
|||�

k
i,j

||| ⩽ L2
|||u(xi, yj, tk−m) − uk−m

i,j

|||, L2 ∈ ℝ∗,

�
k =

(
�
k
1,1
,⋯ , �k

Mx−1,1
, �k

1,2
,⋯ , �k

Mx−1,2
,⋯ , �k

1,My−1
,⋯ , �k

Mx−1,My−1

)T

.

‖𝜖k+1‖∞ ⩽
���
�
I + 𝜃

�
ãxS̃ + b̃yT̃

��−1�
I − (1 − 𝜃)

�
ãxS̃ + b̃yT̃

�����∞‖𝜖
k‖∞

+
���
�
I + 𝜃

�
ãxS̃ + b̃yT̃

��−1���∞Δt
�
𝜃‖𝜂k+1‖∞ + (1 − 𝜃)‖𝜂k‖∞ + ‖Rk‖∞

�
,

Δt�‖�k+1‖∞ + Δt(1 − �)‖�k‖∞ ⩽ L2Δt�‖�k+1−m‖∞ + L2Δt(1 − �)‖�k−m‖∞,

(43)‖Rk‖∞ ⩽ Ĉ1

�
(Δt)2 + hx + hy

�
,
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Therefore, the error ‖�k+1‖∞ can be fully improved as follows:

Denote 𝜉 ≜ 1 + L2Δt , then we have

Similar to (38) and assisted by ê0 = 0 from (44), the above-mentioned iterations (45) result 
in the following relations by applying discretized Grönwall inequalities:

which indicates that the numerical method defined by (20) is convergent.
Case 2 When � ∈ [0, 1∕2) ∪ (1∕2, 1] , the maximum norm of Rk satisfies

where Ĉ1 is a positive constant. We can clearly illustrate êk+1 satisfies

(44)ê0 = 0, ê0 ⩽ ê1 ⩽ ⋯ ⩽ êk−1 ⩽ êk.

êk+1 ⩽
‖‖‖
(
I + ãx𝜃S̃ + b̃y𝜃T̃

)−1(
I − ãx(1 − 𝜃)S̃ − b̃y(1 − 𝜃)T̃

)‖‖‖∞ê
k

+
‖‖‖
(
I + ãx𝜃S̃ + b̃y𝜃T̃

)−1‖‖‖∞
L2

2
Δt

(
êk+1−m + êk−m

)

+
‖‖‖
(
I + ãx𝜃S̃ + b̃y𝜃T̃

)−1‖‖‖∞�C1Δt
(
(Δt)2 + hx + hy

)

⩽
(
1 + L2Δt

)
êk + �C1

(
(Δt)3 + Δt

(
hx + hy

))
.

(45)

êk+1 ⩽ 𝜉êk + �C1

(
(Δt)3 + Δt

(
hx + hy

))

⩽ 𝜉
2êk−1 + 𝜉�C1

(
(Δt)3 + Δt

(
hx + hy

))
+ �C1

(
(Δt)3 + Δt

(
hx + hy

))

⋯

⩽ 𝜉
k+1ê0 + �C1

(
(Δt)3 + Δt

(
hx + hy

))(
𝜉
k + 𝜉

k−1 +⋯ + 𝜉 + 1
)

⩽ 𝜉
k+1ê0 + �C1

(
(Δt)3 + Δt

(
hx + hy

))(𝜉
k+1 − 1

𝜉 − 1

)

= 𝜉
k+1ê0 + �C1

(
(Δt)2 + hx + hy

)
Δt

(
𝜉
k+1 − 1

L2Δt

)

⩽ 𝜉
k+1

(
�C1

L2

(
(Δt)2 + hx + hy

)
+ ê0

)
.

(46)
êk+1 ⩽

�C1

L2

(
(Δt)2 + hx + hy

)(
1 + L2Δt

)k+1

⩽
�C1

L2
exp

(
L2T

)(
(Δt)2 + hx + hy

)
⩽ �C

(
(Δt)2 + hx + hy

)
,

(47)‖Rk‖∞ ⩽ Ĉ1

�
Δt + hx + hy

�
,

(48)

êk+1 ⩽
‖‖‖
(
I + ãx𝜃S̃ + b̃y𝜃T̃

)−1(
I − ãx(1 − 𝜃)S̃ − b̃y(1 − 𝜃)T̃

)‖‖‖∞ê
k

+
‖‖‖
(
I + ãx𝜃S̃ + b̃y𝜃T̃

)−1‖‖‖∞L2Δt
(
𝜃êk+1−m + (1 − 𝜃)êk−m

)

+
‖‖‖
(
I + ãx𝜃S̃ + b̃y𝜃T̃

)−1‖‖‖∞�C1

(
(Δt)2 + Δt

(
hx + hy

))

⩽
(
1 + L2Δt

)
êk + �C1

(
(Δt)2 + Δt

(
hx + hy

))
,
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therefore, Inequalities (48) give

To sum up, the convergence of the proposed numerical method is evidently proved.

4  Numerical Experiments

In this section, we will implement an example to demonstrate the effectiveness of theoreti-
cal conclusions. Consider the following equations:

Moreover, f(x, y, t) is relatively defined by

where g̃(x, y) = x4(1 − x)4y4(1 − y)4 , and f̃ 𝛼(x, t), f̃ 𝛽(y, t) are denoted as follows: 

êk+1 ⩽
(
1 + L2Δt

)
êk + �C1

(
(Δt)2 + Δt

(
hx + hy

))

⩽
�C1

L2
(Δt + hx + hy)

(
1 + L2Δt

)k+1
⩽

�C1

L2
exp

(
L2T

)(
Δt + hx + hy

)

⩽ �C
(
Δt + hx + hy

)
.

(49)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ut(x, y, t) = 3.75��
x
u(x, y, t) + 2 × 10−4��

y
u(x, y, t)

+ u(x, y, t − 1)(1 − u(x, y, t − 1)) + f (x, y, t), t ∈ (0, T],

u(0, y, t) = 0,
�

�x
u(1, y, t) = 0, y ∈ [0, 1],

u(x, 0, t) = 0,
�

�y
u(x, 1, t) = 0, x ∈ [0, 1],

u(x, y, t) = e−tx4(x − 1)4y4(y − 1)4, t ∈ [−1, 0], 0 ⩽ x, y ⩽ 1.

f (x, y, t) = −10

(
e−tg̃(x, y) − 𝜅2

e−ty4(1 − y)4

2 cos (𝛼π∕2)
f̃ 𝛼(x, t) − 𝛾2

e−tx4(1 − x)4

2 cos (𝛽π∕2)
f̃ 𝛽(y, t)

)

− 10e−(t−𝜏)g̃(x, y)
(
1 − 10e−(t−𝜏)g̃(x, y)

)
,

(50a)

f̃ 𝛼(x, t) = (6 − 𝛼)(5 − 𝛼)
Γ(5)

Γ(7 − 𝛼)

(
x4−𝛼 + (1 − x)4−𝛼

)

− 4(7 − 𝛼)(6 − 𝛼)
Γ(6)

Γ(8 − 𝛼)

(
x5−𝛼 + (1 − x)5−𝛼

)

+ 6(8 − 𝛼)(7 − 𝛼)
Γ(7)

Γ(9 − 𝛼)

(
x6−𝛼 + (1 − x)6−𝛼

)

− 4(9 − 𝛼)(8 − 𝛼)
Γ(8)

Γ(10 − 𝛼)

(
x7−𝛼 + (1 − x)7−𝛼

)

+ (10 − 𝛼)(9 − 𝛼)
Γ(9)

Γ(11 − 𝛼)

(
x8−𝛼 + (1 − x)8−𝛼

)
,
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Here, the analytic solution of Problem (49) is u(x, y, t) = 10e−tx4(1 − x)4y4(1 − y)4 . Fol-
lowing that, we will verify the consistency between theoretical and numerical conclusions 
under various parameters.

Stability Tests. To illustrate Theorem  3 regarding the conditional stability, we pri-
marily take � = 1∕4 into consideration, accompanied with fixed hx = hy = 1∕10 and 
� = 1.8, � = 1.6 . By simple calculations, it is worth noting that the stability of Prob-
lem (49) is limitedly satisfied when m ⩾ 136 , mainly relies on the maximum eigenvalue 
� = 3.633 9.

Thus, let m = 300 as an appropriate situation conformed with (28), we directly observe 
that the numerical solutions are stable in Fig. 1. Furthermore, paying attention to Fig. 2, it 
is surprising that though the corresponding solutions are stable with several tiny spatial-
intervals, the numerical stability is still inexplicable due to these enormous values. Par-
ticularly, we proceed to consider � = 3∕4 . These subsequent pictorial results with different 
step-sizes are shown in Figs. 3 and 4, which get a better understanding of the unconditional 
stability.

Convergence Tests. At the very beginning, we define the proposed errors between ana-
lytic and numerical solutions

Meanwhile, two kinds of orders concerning convergence in the L∞-norm with regard to 
temporal and spatial directions are, respectively, defined by

We preliminarily explore the convergence along spatial directions involved hx, hy . To 
assure the stability, a tiny temporal step-size Δt = 1 × 10−3 is necessarily fixed. Based on 
couples of numerical simulations, the error estimations and the orders of convergence are 
enumerated in Table 2 with multiple coefficients. By briefly glancing at this tabulation, we 
can discern that the numerical method in Sect.  3 has a better convergence, since Ord1∞ 
approximates to 1 when � = 0.5, 0.75, 1.

Beyond that, the global convergence along spatial and temporal directions will be veri-
fied. Corresponding error estimations and the orders of convergence link efficiently with 
multiple computations are verified in Table  2 as well. What is notable, is that Ord2∞ 

(50b)

f̃ 𝛽(y, t) = (6 − 𝛽)(5 − 𝛽)
Γ(5)

Γ(7 − 𝛽)

(
y4−𝛽 + (1 − y)4−𝛽

)

− 4(7 − 𝛽)(6 − 𝛽)
Γ(6)

Γ(8 − 𝛽)

(
y5−𝛽 + (1 − y)5−𝛽

)

+ 6(8 − 𝛽)(7 − 𝛽)
Γ(7)

Γ(9 − 𝛽)

(
y6−𝛽 + (1 − y)6−𝛽

)

− 4(9 − 𝛽)(8 − 𝛽)
Γ(8)

Γ(10 − 𝛽)

(
y7−𝛽 + (1 − y)7−𝛽

)

+ (10 − 𝛽)(9 − 𝛽)
Γ(9)

Γ(11 − 𝛽)

(
y8−𝛽 + (1 − y)8−𝛽

)
.

(51)
E∞(hx, hy,Δt) = max

1⩽i⩽Mx ,1⩽j⩽My,

1⩽k⩽N

|||u(xi, yj, tk) − uk
i,j

|||.

Ord1∞ = log2

(
E∞(2hx, 2hy,Δt)

E∞(hx, hy,Δt)

)
, Ord2∞ = log2

(
E∞(2hx, 2hy, 2Δt)

E∞(hx, hy,Δt)

)
.
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approaches to 2 with � = 0.5 and approximates to 1 with � = 0.75, 1 , which validates Theo-
rem 5 owing to their good convergence.

Furthermore, we will investigate the interaction effect of fractional derivatives � and � , 
respectively. To achieve this, it is necessary to reduce the two-dimensional problem to a 
lower order.

Fig. 1  Numerical solutions of Problem (49) when m = 300,T = 1, � = 0.25

Fig. 2  Numerical solutions of Problem (49) when m = 100,T = 1, � = 0.25
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Tests of the Interaction Impact of Fractional Derivatives. In the preliminary stage, we 
should select and fix an appropriate point to better explore the impact of space-fractional 
derivatives �, �.

Denote h2
x
= h2

y
= Δt when hx = 1∕20, � = 0.75 . According to the information provided 

in Fig. 5, the computational simulations are depicted for fixed � and various � . Compared 
with the analytic solutions, the order of space-fractional derivative � has a profound effect 

Fig. 3  Numerical solutions of Problem (49) when m = 100,T = 10, � = 0.75

Fig. 4  Numerical solutions of Problem (49) when m = 400,T = 10, � = 0.75
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on the numerical calculations. To be specific, the numerical solutions completely approxi-
mate to the analytic solutions under the situation � = �.

Additionally, the simulative computations involved proposed numerical methods for 
fixed � and various � are presented in Fig. 6. Nevertheless, three groups of numerical solu-
tions in this graph are roughly equal, which indicates that different values of � have slight 
impact on numerical analysis. What gives rise to this phenomenon is likely to depend on 
the tiny value of the diffusion parameter �2.

Remark 1 When considering space-fractional derivatives are discretized by the centered 
difference operator with second-order accuracy novelly applied in [7, 14, 20], relevant 
numerical tests are acquired by the linear �-method, where the computing procedure is 
simplified.

Denote C ≜ Centered Difference Operator and G ≜ Grünwald-Letnikov Operator.
In accordance with the following information compared with Figs.  5 and 7, we can 

detect that similar observations of influence caused by fractional derivatives are presented 
under the same situations mentioned above. However, if we look closer at the fluctuation 
reflected in Fig. 8, the feasibility associated with the Grünwald-Letnikov operator is much 
steadier in terms of smoothness and error limitations.

5  Concluding Remarks

In summary, we have studied the linear �-method with the Grünwald-Letnikov operator 
based on the unconditional stability of analytic solutions for generalized delayed space-
fractional Fisher equations in two dimensions. The ADIM has been beneficially introduced 
to simplify the calculations and matrices’ integrations. Then we successively demon-
strated the numerical scheme is conditionally stable with � ∈ [0, 1∕2) and its unconditional 

Table 2  The errors and orders of convergence with different parameters when T = 8

Various numerical errors computed by the linear �-method with the Grünwald-Letnikov operator

hx = hy Δt � = 0.5 � = 0.75 � = 1

when � = � = 1.5 E∞ Ord1∞ E∞ Ord1∞ E∞ Ord1∞

1/5 1/1 000 3.192 1E−08 3.192 2E−08 2.525 3E−07
1/10 1.703 8E−08 0.905 731 1.703 9E−08 0.905 708 1.344 6E−07 0.909 264
1/20 8.683 2E−09 0.972 496 8.683 6E−09 0.972 481 6.234 8E−08 1.108 752
1/40 4.368 3E−09 0.991 139 4.368 6E−09 0.991 136 3.102 0E−08 1.007 133

hx = hy Δt � = 0.5 � = 0.75 � = 1

when 
� = 1.8, � = 1.6

E∞ Ord2∞ E∞ Ord2∞ E∞ Ord2∞

1/5 1/25 3.487 1E−08 3.487 0E−08 3.046 9E−08
1/10 1/100 8.975 2E−09 1.957 997 1.597 3E−08 1.126 321 1.458 1E−08 1.063 254
1/20 1/400 2.416 6E−09 1.892 972 8.082 1E−09 0.982 857 7.063 6E−09 1.045 633
1/40 1/1 600 6.247 9E−10 1.951 533 3.695 1E−09 1.129 107 3.325 1E−09 1.087 000
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Fig. 5  Numerical solutions and analytic solutions of Problem (49) with different � when 
� = 1.6, y = 0.5,T = 10
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Fig. 6  Numerical solutions and analytic solutions of Problem (49) with different � when 
� = 1.8, x = 0.5,T = 10
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Fig. 7  Numerical computations of Problem (49) with two different methods and various � when 
� = 1.6, y = 0.5,T = 10
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Fig. 8  Numerical computations of Problem (49) with two different methods and various � when 
� = 1.8, x = 0.5,T = 10
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stability with � ∈ [1∕2, 1] . Under those comprehensive investigations, the convergence has 
been discussed by utilizing Taylor expansions and error estimations with different �.

Numerical experiments showed that the proposed computing method has a rational sta-
bility and convergence consistent with theoretical results, especially the interaction impacts 
of space-fractional derivatives calculated by linear �-methods with two harmonic operators 
have been further interpreted. A notable thing is that the Grünwald-Letnikov operator with 
first-order precision displays a surprisingly better simulation than other higher-order coun-
terparts. Due to the complicated as well as generalized cases resulted by practical applica-
tions, further complicating the picture is deeper research of seeking requisite conditions for 
more steady numerical results simulated by difference operators with the higher accuracy, 
and we will consider multiple delayed dimensional problems with nonsmooth solutions in 
the future.
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